Word level confidence annotation using combinations of features
نویسندگان
چکیده
This paper describes the development of a word-level confidence metric suitable for use in a dialog system. Two aspects of the problems are investigated: the identification of useful features and the selection of an effective classifier. We find that two parse-level features, Parsing-Mode and SlotBackoff-Mode, provide annotation accuracy comparable to that observed for decoder-level features. However, both decoderlevel and parse-level features independently contribute to confidence annotation accuracy. In comparing different classification techniques, we found that Support Vector Machines (SVMs) appear to provide the best accuracy. Overall we achieve 39.7% reduction in annotation uncertainty for a binary confidence decision in a travel-planning domain.
منابع مشابه
Tags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملComputing Confidence Scores for All Sub Parse Trees
Computing confidence scores for applications, such as dialogue system, information retrieving and extraction, is an active research area. However, its focus has been primarily on computing word-, concept-, or utterance-level confidences. Motivated by the need from sophisticated dialogue systems for more effective dialogs, we generalize the confidence annotation to all the subtrees, the first ef...
متن کاملConfidence measures for spoken dialogue systems
This paper provides improved confidence assessment for detection of word-level speech recognition errors, out of domain utterances and incorrect concepts in the CU Communicator system. New features from the speech understanding component are proposed for confidence annotation at utterance and concept levels. We have considered a neural network to combine all features in each level. Using the da...
متن کاملRobust confidence annotation and rejection for continuous speech recognition
We are looking for confidence scoring techniques that perform well on a broad variety of tasks. Our main focus is on word-level error rejection, but most results apply to other scenarios as well. A variation of the Normalized Cross Entropy that is adapted to that purpose is introduced. It is successfully used to automatically select features and optimize the word-level confidence measure on sev...
متن کاملA senone based confidence measure for speech recognition
This paper describes three experiments in using frame level observation probabilities as the basis for word confidence annotation in an HMM speech recognition system. One experiment is at the word level, one uses word classes, and the other uses phone classes. In each experiment we categorize hypotheses into correct and incorrect categories by aligning a best recognition hypothesis with the kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001